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Abstract
A nonlinear (polynomial, N-fold) SUSY approach to preparation of quantum
systems with pre-planned spectral properties is reviewed. The full classification
of ladder-reducible and irreducible chains of SUSY algebras in one-
dimensional QM is given. Possible extensions of SUSY in one dimension
are described. They include (no more than) N = 2 extended SUSY with
two nilpotent SUSY charges which generate the hidden symmetry acting as a
central charge. Embedding stationary quantum systems into a non-stationary
SUSY QM is shown to yield new insight into quantum orbits and into spectrum
generating algebras.

PACS numbers: 03.65.Ca, 03.65.Fd, 11.30.Pb

1. Introduction: Darboux intertwining, Schrödinger factorization, Witten SUSY
mechanics in one basket

The concept of supersymmetric quantum mechanics (SUSY QM) initially associated with the
0 + 1 dimensional SUSY field theory [1] aimed at a simplified analysis of difficult problems
of multi-dimensional QFT such as spontaneous SUSY breaking, vacuum properties beyond
perturbation theory etc [2, 3]. In addition, the realization of different SUSY algebras in
quantum physics turned out to be easily achieved in certain QM models [4, 5].

Soon after its formulation SUSY QM was well identified with the quantum mechanics
of isospectral systems described by Hamiltonians with almost coincident energy spectra
[6–10]. SUSY manifested itself through intertwining Darboux [11] transformations between
isospectral partners, used before in mathematics [12–16]. The latter property presumably
gave Schrödinger [17] a hint as to how to factorize the corresponding Hamiltonians into a
product of simplest, first-order Darboux operators [18]. Altogether the differential realization
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of SUSY in QM stimulated its application for the spectral design, i.e. for preparation of
quantum potential systems with pre-planned energy spectra [19–39] and scattering data [9,
40–50] or potential profiles [51, 52] in a constructive way. For the spectral design kit the
nonlinear supersymmetry in its differential realization [53–90] has become one of the most
efficient tools to build various isospectral quantum systems with desired features. By now,
several books and reviews [91–103] devoted to certain achievements and diverse applications
of the SUSY QM approach have illuminated at length many of the above mentioned trends.
In contradistinction, the role and the structure of nonlinear SUSY QM was only developed in
the last decade and has not yet been surveyed.

The interplay between the algebraic and differential properties of nonlinear
supersymmetry, in the spectral design, is guiding our present work: we are going to clarify the
benefits of an algebraic SUSY approach to the old Darboux–Crum method, to develop, with
these tools, the complete classification of differential realizations of nonlinear SUSY algebras
and to give insight into intrinsic links between SUSY isospectrality and hidden symmetries in
particular quantum systems.

In what follows we restrict ourselves to the full analysis in the one-dimensional, one-
component, stationary QM elaborating a few important examples for the non-stationary
Schrödinger equation and leave complex, matrix, multidimensional and/or relativistic (Dirac,
Klein-Gordon etc) equations without any detailed comments.

Let us start the retrospection of SUSY QM: consider two one-dimensional Schrödinger
Hamiltonians h± defined on the line and assemble them into a matrix super-Hamiltonian,

H =
(

h+ 0
0 h−

)
=

(−∂2 + V1(x) 0
0 −∂2 + V2(x)

)
, ∂ ≡ d/dx, (1)

with non-singular real potentials. These Hamiltonians h± are supposed to have (almost) the
same energy levels for bound states and/or the same spectral densities for continuum parts
of spectra. Furthermore, assume that their isospectral connection is provided by intertwining
with the Crum–Darboux [11, 12] transformation operators q±

N ,

h+q+
N = q+

Nh−, q−
Nh+ = h−q−

N , (2)

where the Nth order differential operators

q±
N =

N∑
k=0

w±
k (x)∂k, w±

N = const ≡ (∓1)N . (3)

The conventional, linear N = 1 SUSY QM in the fermion number representation [2] is
implemented by nilpotent supercharges Q1,Q

†
1 of first order in derivatives built from a real

super-potential χ(x),

q±
1 ≡ ∓∂ + χ(x); �⇒ Q1 =

(
0 q+

1

0 0

)
, Q2

1 = (
Q

†
1

)2 = 0, (4)

where † stands for the operation of Hermitian conjugation (as well employing differential
operators with real coefficients the Hermitian conjugation is equivalent to the operation of
transposition, Q† = Qt ).

The intertwining relations introduced in (2) result in supersymmetry for a super-
Hamiltonian H,

[H,Q1] = [
H,Q

†
1

] = 0. (5)

The SUSY algebra is completed by the appropriate decomposition of the super-Hamiltonian,

H = {
Q1,Q

†
1

} ⇐⇒ h+ = q+
1 q−

1 = −∂2 + χ2 − χ ′; h− = q−
1 q+

1 = −∂2 + χ2 + χ ′,
(6)
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which is in line with the Schrödinger one-step factorization [17, 18]. The notation χ ′ ≡ dχ/dx

has been employed.
At this stage, the super-potential χ is generated by zero-energy solutions of the

Schrödinger equations (equivalently, zero-modes of supercharges Q1,Q
†
1),

h±φ∓
(0) = 0 = q∓

1 φ∓
(0); φ−

(0)(x) = (
φ+

(0)(x)
)−1 = exp

(
−

∫ x

dy χ(y)

)
. (7)

If χ(x) is a non-singular function then the zero-modes φ∓
(0) are nodeless. This leads to a

non-negative physical spectrum in agreement with the SUSY algebra (6),

〈ψ |H |ψ〉 = 〈Q1ψ |Q1ψ〉 +
〈
Q

†
1ψ

∣∣Q†
1ψ

〉
� 0, (8)

for any L2-normalizable, smooth wavefunction ψ(x).
Several options exist for the choice of zero-modes of supercharges Q1,Q

†
1. If one

of the zero-modes φ∓
(0) is normalizable then it becomes a ground-state wavefunction of the

super-Hamiltonian H (i.e. of h+ or h−). But another one remains non-normalizable due to
equation (7). Thus either q− or q+ deletes the ground-state level of h+ or h−. When keeping in
mind the spectral design program one can also interpret it conversely: if q− deletes the lowest
level of h+ converting it into h− then q+ creates a new level for h− transforming it into h+.

Another option is realized by the non-normalizable nodeless functions φ∓
(0) when none of

them belongs to the physical spectrum of the Hamiltonians h±. In this case the entire sets
of physical eigenstates of both the Hamiltonians are put into one-to-one correspondence by
intertwining relations (2),

h±ψ±
E = Eψ±

E ; E > 0; ψ∓
E = 1√

E
q∓

1 ψ±
E , (9)

and such Hamiltonians are strictly isospectral. In the SUSY vocabulary it is the case of
‘spontaneous’ SUSY breaking as the lowest ground state of the super-Hamiltonian H is
degenerate.

The previous analysis has been based not only on the intertwining relations (2) but also
on the factorization (6). However there is no such factorization for higher-order intertwining
operators (3). What do we have for the latter ones instead?

2. From the ladder of SUSYs via parasupersymmetry towards polynomial SUSY

Let us proceed by recursion and discover different levels of isospectrality: from a simple
Darboux transformation to a ladder or a dressing chain made of several simple Darboux
steps. Actually the whole variety of elementary building blocks for spectral design can be
well developed within the class of transformation operators q±

2 of second-order in derivatives.
One has to select the operators (3) with non-singular coefficient functions which produce a
non-singular potential V2 after intertwining (2) with the smooth initial potential V1.

First of all, to produce the required transformation operators the two different linear
SUSY systems may be ‘glued’. Indeed, consider the two super-Hamiltonians Hi, i = 1, 2,
equation (1), respectively two supercharges Qi with super-potentials χi and supercharge
components r±

i = ∓∂ + χi . Let us identify two elements of super-Hamiltonians,

h−
1 = h+

2 + λ; χ2
1 + χ ′

1 = χ2
2 − χ ′

2 + λ (10)

with E
(0)
1 � λ � −E

(0)
2 where E

(0)
1 and E

(0)
2 are ground-state energies for h−

1 and h+
2 ,

respectively. Evidently the constant shift of the super-Hamiltonian H2 → H2 + λ does not
break or change the supersymmetry.
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After such a gluing the chain of intertwining relations (2) can be assembled into
the supersymmetry transformation [Hps,Qps] = [

Hps,Q
†
ps

] = 0 of the combined super-

Hamiltonian Hps and the joint supercharges Qps,Q
†
ps,

Hps =
h+

1 − λ
2 0 0

0 h−
1 − λ

2 = h+
2 + λ

2 0
0 0 h−

2 + λ
2

 ; Qps =
0 r+

1 0
0 0 r+

2

0 0 0

 , (11)

where we have shifted both super-Hamiltonians symmetrically to simplify the algebra further.
However these supercharges Qps,Q

†
ps are no longer nilpotent of order 2 and therefore do

not mimic the Pauli principle. Still they are nilpotent of order 3, Q3
ps = (

Q
†
ps

)3 = 0, and
therefore the states carrying these charges obey the para-statistical principle. Thus we now
deal with the parasupersymmetry [104–109]. Furthermore the closure of the superalgebra is
no longer given by equation (6). The lowest-order relation between the super-Hamiltonian
and the para-supercharges is trilinear,

Q†
psQ

2
ps + Q2

psQ
†
ps + QpsQ

†
psQps = 2HpsQps. (12)

This quantum system reveals triple degeneracy of levels with the possible exception of
the two lowest states. We also draw the reader’s attention to the possibility of treating
both the intermediate Hamiltonians h−

1 and h+
2 + λ separately, in spite of their identification,

thus doubling the Hilbert spaces spanned by their eigenfunctions. It leads to a model of
‘weak supersymmetry’ with quadruple level degeneracy [110] which may be susceptible to
prolongation onto a weak-SUSY field theory.

Going back to the spectral design purposes, the para-supersymmetric dynamics contains
redundant information, namely, about the intermediate Hamiltonian h−

1 = h+
2 + λ. One is, in

fact, interested in the final Hamiltonian h−
2 only as produced from the initial one, h+

1 , by means
of a second-order Darboux transformation,

h+
1r

+
1 r+

2 = r+
1 h−

1 r+
2 = r+

1

(
h+

2 + λ
)
r+

2 = r+
1 r+

2

(
h−

2 + λ
); r−

2 r−
1 h+

1 = (
h−

2 + λ
)
r−

2 r−
1 . (13)

Let us make a shortcut and define the two isospectral components h± as

h+ ≡ h+
1 + λ1 = r+

1 r−
1 + λ1; h− ≡ h−

2 + λ2 = r−
2 r+

2 + λ2; (14)

r−
1 r+

1 + λ1 = r+
2 r−

2 + λ2; (15)

for the generalized super-Hamiltonian (1) where we have employed a more general energy
reference (shift by arbitrary λ1,2). Evidently, λ = λ2 − λ1. Then the intertwining relations (2)
are identical to equation (13) with q+

2 = r+
1 r+

2 and the supersymmetry [H,Q2] = [
H,Q

†
2

] = 0
is generated by the conserved supercharges,

Q2 =
(

0 q+
2

0 0

)
, Q2

2 = (
Q

†
2

)2 = 0. (16)

In place of equation (6), because of (14) the algebraic closure is given by,{
Q2,Q

†
2

} =
(

r+
1 r+

2 r−
2 r−

1 0
0 r−

2 r−
1 r+

1 r+
2

)
= (H − λ1)(H − λ2). (17)

Thus we have obtained the second-order polynomial SUSY algebra [53–60] as a concise form
of isospectral deformation of a potential system accomplished by a ladder [6–10, 18–23] or a
dressing chain [29–32] of a couple of one-step Darboux transformations or, equivalently, by
a second-order Crum–Darboux intertwining [12, 27, 97] or by a blocking of two linear SUSY
with partial overlapping of super-Hamiltonians [53] (‘weak SUSY’ [110]), or by a tower of
para-SUSY transformations [104–108].
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In the modern SUSY vocabulary there are several synonyms for the higher-order SUSY
algebra: originally it was named as a polynomial (or higher derivative) one [53, 54], recently
the title of N-fold SUSY has been suggested [73] and, finally, a more general term of nonlinear
SUSY has been used [80] with a certain reference to nonlinear SUSY algebra arising in
the conformal QM [111]. In what follows we will combine the first name and the last one
depending on the structure of a superalgebra [85].

This polynomial SUSY keeps track of essential spectral characteristics of the second-order
SUSY (Crum–Darboux transformations). Indeed, the zero-modes of intertwining operators
q±

2 or, equivalently, the zero-modes of the Hermitian supercharges Q+
2 = Q2 + Q

†
2;Q−

2 =
i
(
Q

†
2 − Q2

)
, form the basis of a finite-dimensional representation of the super-Hamiltonian,

q±
2 φ±

i (x) = 0 = q±
2 h∓φ±

i (x); i = 1, 2; h∓φ±
i (x) =

2∑
j=1

S∓
ij φ

±
j (x), (18)

due to intertwining relations (2), (13). In terms of these Hamiltonian projections, constant
matrices S∓, the SUSY algebra closure takes the following polynomial form [85] (see also
[73]): {

Q2,Q
†
2

} = det[EI − S+]E=H = det[EI − S−]E=H ≡ P2(H). (19)

Thus both matrices S∓ have the same set of eigenvalues which for the ladder construction (17)
consists of λ1, λ2. As the zero-mode set is not uniquely derived from (18) the matrices S∓

are not necessarily diagonal. For instance, the equation r+
1 r+

2 φ+(x) = 0 has one zero-mode φ+
2

obeying r+
2 φ+

2 (x) = 0 and another one obeying r+
1 φ̃+

1 = 0; φ̃+
1 = r+

2 φ+
1 (x) �= 0. Evidently the

zero-mode solution φ+
1 (x) is determined up to an arbitrary admixture of φ+

2 . When multiplying
these linear equations by r−

2 one easily proves with the help of equations (14), (15) that

(h− − λ2)φ
+
2 (x) = 0; (h− − λ1)φ

+
1 (x) = Cφ+

2 (x); S− =
(

λ1 C

0 λ2

)
, (20)

where C is an arbitrary real constant. If λ1 �= λ2 then by the redefinition (λ1 − λ2)φ̄
+
1 ≡

(λ1 −λ2)φ
+
1 +Cφ+

2 (x) one arrives at the canonical diagonal form S̃−. However in the confluent
case, λ1 = λ2 ≡ λ,C �= 0, it is impossible to diagonalize and by a proper normalization of
the zero-mode φ+

1 one gets another canonical form S̃− of this matrix, the elementary Jordan
cell [112],

(h− − λ)φ+
2 (x) = 0; (h− − λ)φ+

1 (x) = φ+
2 (x); S̃− =

(
λ 1
0 λ

)
. (21)

We display it to emphasize that in the confluent case the zero-mode φ+
1 is no longer a solution

of the Schrödinger equation but it is a so-called adjoint solution [113] which can be obtained
by differentiation, φ+

1 = dφ+
2

/
dλ. Yet the intermediate Hamiltonian h̃ = r−

1 r+
1 + λ = r+

2 r−
2 + λ

is well defined and therefore the intermediate isospectral partner φ̃+
1(x) of the zero-mode φ+

1 (x)

is a solution of the Schrödinger equation with the above Hamiltonian. The analysis of the
matrix S+ is similar. Thus we have established that in general the Hamiltonian projection onto
the subspace of (Hermitian) supercharge zero-modes is not diagonalizable but can always be
transformed into a canonical Jordan form.

To accomplish the description of polynomial SUSY algebras generated by a second-order
ladder one should also take into consideration the degenerate case when λ1 = λ2 ≡ λ,C = 0.
For this choice the matrix S− is automatically diagonal and both zero modes φ+

1,2(x) are
(independent) solutions of the Schrödinger equation with the Hamiltonian h−. Then it can
be proved [85] that the intertwining operator q+

2 is just a linear function of this Hamiltonian,
q+

2 = λ − h−. Hence the intertwining is trivial h− = h+ and such supercharges must be
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eliminated. For higher-order SUSY the removal of such blocks in supercharges may lead to
ladder irreducible SUSY algebras (see section 4).

The very fact that the Hamiltonian is represented by finite matrices S± is interpreted
sometimes [78, 75] as a phenomenon of quasi-exact solvability (QES) [114, 115]. This point
needs a certain comment. If one is seeking for some formal solutions of the Schrödinger
equation, not necessarily normalizable and regular, then such a formal QES can be accepted.
But for the spectral design we impose physical boundary conditions and requirements of
normalizability which are essential to define the energy levels properly. Then QES for physical
wavefunctions is achieved only if one or both eigenvalues belong to the energy spectrum of
the super-Hamiltonian. Obviously it is an exceptional situation which is not granted by the
polynomial SUSY itself.

Let us complete this section with the general description of the N-step ladder which
entails the polynomial superalgebra of Nth order. We introduce a set of first-order differential
operators for the intermediate intertwinings,

r±
l = ∓∂ + χl(x), l = 1, . . . , N (22)

and the relevant number of intermediate super potentials χl(x). The set of initial, h+ ≡ h0,
final, h− ≡ hN , and intermediate Hamiltonians, hl = −∂2 + vl(x), consists of Schrödinger
operators, so far non-singular and real ones. They obey the ladder relations (‘gluing’),

hl ≡ r−
l · r+

l + λl = r+
l+1 · r−

l+1 + λl+1, l = 1, . . . , N − 1,

hN ≡ h− = r−
N · r+

N + λN, h0 ≡ h+ = r+
1 · r−

1 + λ1.
(23)

These gluing relations are provided by the (dressing) chain equations on super-potentials,

vl(x) = (χl(x))2 + (χl(x))′ + λl = (χl+1(x))2 − (χl+1(x))′ + λl+1. (24)

The corresponding intertwining (Darboux) transformations hold for each adjacent pair of
Hamiltonians,

hl−1 · r+
l = r+

l · hl, r−
l · hl−1 = hl · r−

l , (25)

and therefore the chain of N overlapping SUSY systems is properly built,

Hl =
(

hl−1 0
0 hl

)
, Rl =

(
0 r+

l

0 0

)
;

[Hl,Rl] = [
Hl,R

†
l

] = 0, Hl − λl = {
Rl, R

†
l

}
.

(26)

This chain supersymmetry can be equally converted into an N-order parasupersymmetry
similar to equations (11), (12), which however we do not need for the further construction.

Now let us disregard a chain of intermediate Hamiltonians between h+ and h− and proceed
to the higher derivative � polynomial � nonlinear SUSY algebra for the super-Hamiltonian H
given in equation (1). The intertwining between h+ and h− is realized by the Crum–Darboux
operators,

q+
N = r+

1 · · · r+
N, q−

N = r−
N · · · r−

1 . (27)

The SUSY symmetry, [H,QN ] = [
H,Q

†
N

] = 0, is still performed by the supercharges of
the same matrix structure (16) and the super-Hamiltonian is represented by finite-dimensional
matrices on the subspaces of supercharge zero-modes,

q±
Nφ±

i (x) = 0; i = 1, 2, . . . , N; h∓φ±
i (x) =

N∑
j=1

S∓
ij φ

±
j (x), (28)
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due to intertwining relations (2). In terms of the constant matrices S∓, the algebraic closure is
just represented by a nonlinear SUSY relation [73, 85],

{
QN,Q

†
N

} = det[EI − S+]E=H = det[EI − S−]E=H ≡ PN(H) =
N∏

l=1

(H − λl). (29)

The disposition of the real roots λl against the energy levels of the super-Hamiltonian is
assumed to provide the positivity of the superalgebra (29) (see the next section). Namely, if
m lowest energy levels, {Ej }, j = 0, . . . , m − 1 are among the roots, {Ej } ⊂ {λl} then all
λl < Em. Again both matrices S∓ have the same set of eigenvalues which for the ladder
construction (23) consists of λ1, . . . , λN . If the degenerate roots appear then the canonical
forms S̃∓ of the latter matrices are not necessarily diagonal and may consist of Jordan cells. If
all the intermediate hl are Hermitian, non-singular and if superpotentials are taken real, then
λl are real and each ladder step is well defined. What will happen if we extend the class of
polynomial SUSY algebras admitting complex λl and singular hl?

3. Algebraic classification of polynomial SUSY QM and its functional realization:
irreducibility of type I, II and III

Let us now examine which circumstances may obstruct the SUSY ladder decomposition of a
polynomial SUSY algebra. In fact, all elementary ‘bricks’ irreducible to a chain of one-step
Darboux intertwinings are well revealed for the second-order SUSY algebra described in the
previous section.

For a supercharge of second order in derivatives with real coefficient functions one
can find real zero-modes of the intertwining operators q±

2 and, further on, the 2×2 matrix
representation (18) for the super-Hamiltonian components h± by matrices S±. The latter
matrices are real but, in general, not symmetric. Therefore the first obstruction for the
ladder decomposition may arise because the reduction to a Jordan form has not given real
eigenvalues. For instance, if h+φ−

i (x) = λ̄εikφ
−
i (x) then the eigenvalues of S+ = λ̄ε̂ are

imaginary, mutually conjugated ±iλ̄. The possibility of complex pairs of mutually conjugated
roots in a polynomial SUSY algebra can be easily read off from its closure (19) as for
supercharges with real coefficients polynomials P2(H) possess real coefficients. We call
this kind of irreducibility of type I. Its elementary block corresponds to the polynomial
P(I )

2 (H) = (H +a)2 +d, d > 0 and its analytical properties have been investigated in [54, 84].
Some examples of related isospectral potentials are described in [82].

Next, one has to ensure the positivity of the SUSY algebra relation (19) in a particular
differential realization of a super-Hamiltonian H with real non-singular potentials and the
supercharges QN,Q

†
N (with N = 2 in our case) made of differential operators with real

coefficients. Let the energy spectrum Ej ; j = 0, 1, . . . ;Ej < Ej+1 of H be discrete, for
simplicity. Then,

PN(Ej ) = 〈QN�j |QN�j 〉 +
〈
Q

†
N�j

∣∣Q†
N�j

〉
� 0, (30)

if the action of the supercharges is well defined in the Hilbert space spanned by eigenfunctions
of a super-Hamiltonian. It can be easily extended to a continuum energy spectrum as well
using wave packets.

Thus for regular potentials the allowed disposition of polynomial roots ⇐⇒ zero-modes
of a supercharge provides non-negative values of P(E) for each energy level of a Hamiltonian.
To be definite, one may have the following cases for the allocation of polynomial real roots
(for a pair of complex, mutually conjugated roots the positivity is obvious).
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Case A. λ1 � λ2 � E0 or λ1 = E0; λ2 = E1

The related SUSY algebra has a chain or ladder realization. In other words, it is reducible, in
principle, because one can gradually add/remove λ1 and then λ2 without breaking the positivity
of the intermediate SUSY algebra. The coincidence of roots and energies corresponds in the
spectral design to deleting/inserting energy levels. For instance, if λ1 = E0; λ2 = E1 then
two pairs of zero-modes of q±

2 can be chosen as solutions of two Schrödinger equations with
Hamiltonians h∓. Repeating the arguments of section 1 one can conclude [20] that the energy
levels E0, E1 may well appear in any of the Hamiltonians h± but each level only once, either
in h+ or in h−. Thus the entire variety of spectral design tools happens to be at our disposal:
namely, one may delete the two lowest levels, replace the ground-state level by a different one
and add two more levels below the ground-state one.

Case B. E0 < λ1 < λ2 � E1 or Ej � λ1 < λ2 � Ej+1, 1 � j

A pair of real roots is placed between adjacent energy levels. If one of the solutions
with eigenvalues λ1,2 (zero-modes of the supercharges) is normalizable we perform the
insertion/deletion of an excited energy state. Thus with these means one can delete two
adjacent excited levels, shift the position of an excited level and add two more excited levels
between two adjacent ones. Evidently, such an algebra cannot be safely decomposed into
a chain of two linear SUSY as the removal of any of the roots λ1,2 immediately breaks the
positivity in (30). Then the intermediate Hamiltonian acquires inevitably a real but singular
potential leading to the loss of isospectrality. The related Darboux transformations were
known in the 1950s [14]. We call this irreducibility of type II. Examples and certain theorems
are given in [61, 82].

Case C. Ej < λ1 = λ2 � Ej+1, 0 � j

This is a confluent case which seems to arise as a limit of the previous one. However, let us
recall that the one-dimensional QM does not allow degenerate levels. Besides, let us assume
that the matrix representation for the corresponding super-Hamiltonian contains a non-trivial
Jordan cell. Then the limit becomes quite delicate as one of the zero-modes is not a solution
of the Schrödinger equation but represents an adjoint function [113] (see equation (21) and
the discussion afterwards). This is why we specify this case as a separate one named type III.
With such an intertwining operation one may insert/delete an odd number of excited levels
in an economical way. One may find more information on the analytical properties of related
potentials in [87].

One can apply these second-order blocks and build an Nth-order polynomial SUSY
system. Their general form is again given by equation (29) allowing the presence of the
complex conjugated roots λl . Let us rewrite it taking into account the possibility of complex
and degenerate roots,{

QN,Q
†
N

} = PN(H) =
n∏

l=1

(H − λl)
νl

m∏
j=1

[(H + aj )
2 + dj ]µj ,

N =
n∑

l=1

νl + 2
m∑

j=1

µj , dj > 0.

(31)

We stress that in the general case the Hamiltonian projections onto the zero-mode spaces of
intertwining operators q±

N are finite N × N matrices S∓ and the polynomial SUSY algebra
can be represented by equations (29). Inequality (30) is certainly valid for PN(H).



Nonlinear supersymmetry 10305

Irreducible elements of type II are not straightforwardly seen in the structure of the
polynomial SUSY algebra and can be unravelled only after the inspection of the disposition
of polynomial roots with respect to energy levels. They fill the chain of intertwining
operators being even order in derivatives and placing a pair (or a few pairs) of real
roots λl < · · · < λl+2k−1 (supercharge zero-modes) between two successive energy levels
Ej < λl < · · · < λl+2k−1 < Ej+r; r − 1 � 2k if the intermediate levels {Ej+1, . . . , Ej+r−1} ⊂
{λl, . . . , λl+2k−1}; r − 1 � 2k. The eigenvalues Ej ,Ej+r are assumed not to coincide with any
of polynomial roots. Then the polynomial

P(II)
2k,j,r (H) =

2k−1∏
i=0

(H − λl+i ); P(II)
2k,j,r (Em) > 0. (32)

When the related zero-modes coincide with some eigenfunctions of the super-Hamiltonian the
pertinent supercharges create or annihilate particular excited states in the components h± of
the super-Hamiltonian.

Irreducible elements of type III fill the chain of Darboux transformations being
represented by even-order intertwining operators responsible for the allocation of even
numbers of real confluent roots λl = λl+1 = · · · = λl+2νl−1 (= supercharge zero-modes)
between the two adjacent energy levels Ej < λl � Ej+1 for some 0 � j ,

P(III)
2νl ,j

(H) = (H − λl)
2νl ; P(III)

2νl ,j
(Em) > 0. (33)

No more than two zero-modes can be solutions of the super-Schrödinger equation, in particular,
eigenfunctions of the super-Hamiltonian if Ej = λl . Other zero-modes are adjoint functions
[113] to a solution of the Schrödinger equation.

Finally, in general, the polynomial in equation (31) can be factorized into the product of
the elements (32) and (33) with roots located between two successive or adjacent levels. The
related ladder of the Darboux transformations consists of reducible steps as well as of a few
irreducible elements of type I, II, III displayed in equations (31)–(33).

Yet the question remains whether any irreducible element of type II or III ((32) or (33))
can be decomposed into the ladder of second-order irreducible blocks with regular Hermitian
intermediate Hamiltonians between them in the ladder. We are informed that essential progress
in this direction has been made by A V Sokolov and hope to see it published soon.

On the other hand, an experienced SUSY designer may be somewhat puzzled with the
very existence of irreducible super-transformations. Indeed it is quite conceivable that a pair of
supercharge zero-modes or even a pair of new excited energy levels of the super-Hamiltonian
can be inserted by successive application of first-order intertwining (super) transformations
between regular Hamiltonians following the ladder algorithm described in the previous section.
But the order of the relevant ladder of first-order transformations and respectively of the final
polynomial SUSY will be evidently higher than 2. We come to the problem of a possible
relationship between first-order reducible and irreducible SUSY algebras having the same
super-Hamiltonian.

The related important question concerns the degenerate roots. By general arguments these
roots are distributed between different Jordan cells in the canonical forms S̃± of the matrices
S±. One can inquire how many Jordan cells may coexist and if several cells appear then what
is their role in the supercharge structure. All these problems are clarified with the help of the
strip-off theorem [85].

4. From reducible SUSY to irreducible one when equipped by the strip-off theorem

Let us first elucidate the possible redundancy in supercharges which can be eliminated without
any changes in the super-Hamiltonian (i.e. preserving the same potentials). There exists a
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trivial possibility when the intertwining operators q±
N and p±

N1
for N > N1 are related by a

polynomial factor F(x) depending on the Hamiltonian,

q±
N = F(h±)p±

N1
= p±

N1
F(h∓). (34)

Obviously in this case the appearance of the second supercharge does not result in any new
restrictions on the potentials.

Thus the problem arises of how to separate the non-trivial part of a supercharge and avoid
numerous SUSY algebras generated by means of ‘dressing’ (34). It can be systematically
realized with the help of the following

‘Strip-off’ theorem.
Let us admit the construction given by equations (28) and (29). Then

(a) the matrix S− (or S+) generated by the Hamiltonians h− (or h+) on the subspace of zero-
modes of the operator q+

N (or q−
N ), after reduction to the Jordan form S̃− (or S̃+), may

contain only one or two Jordan cells with equal eigenvalues λl;
(b) assume that there are n pairs (and no more) of Jordan cells with equal eigenvalues and with

the sizes νl of the smallest cell in the lth pair; then this condition is necessary and sufficient
to ensure for the intertwining operator q+

N (or q−
N ) to be represented in the factorized form

q±
N = p±

N1

n∏
l=1

(λl − h∓)νl , (35)

where p±
N1

are intertwining operators of the order N1 = N − 2
∑n

l=1 νl which cannot be
decomposed further into the product similar to (34) with F(x) �= const.

Remark. The matrices S̃± cannot contain more than two Jordan cells with the same eigenvalue
λ because otherwise the operator λ−h± would have more than two linearly independent zero-
modes (not necessarily normalizable).

The full proof of this theorem has been given in [85]. Let us illustrate the theorem in the
following:

Example. The matrix S− for the intertwining operator q+
3 with Jordan cells of different size

having the same eigenvalue. It is generated by the operators,

p± = ∓∂ + χ, h± = p±p∓ + λ, q+
3 = −p+p−p+ = p+(λ − h−). (36)

Respectively

φ+
1 : p−p+φ+

1 = φ+
2 −→ h−φ+

1 = λφ+
1 + φ+

2 ;
φ+

2 : p+φ+
2 = 0 −→ h−φ+

2 = λφ+
2 ;

φ+
3 : p+φ+

3 �= 0, p−p+φ+
3 = 0 −→ h−φ+

3 = λφ+
3 ;

S− =
λ 1 0

0 λ 0
0 0 λ

 . (37)

As a consequence of the ‘strip-off’ theorem one finds that the supercharge components
cannot be factorized in the form (34) if the polynomial P̃N(x) in the SUSY algebra closure
(29) does not have degenerate zeroes. Indeed the SUSY algebra closure contains the square
of polynomial F(x), for instance,

q−
Nq+

N = F(h−)p−
N1

p+
N1

F(h−) = F 2(h−)P̃N1(h
−), (38)

where P̃N1(x) is a polynomial of the lower order, N1 � N − 2. Therefore each zero of the
polynomial F(x) will produce a double zero in the SUSY algebra provided by (38).

Thus the absence of degenerate zeroes is sufficient to have supercharges without
redundancy in the sense of equation (34). However it is not necessary because the degenerate
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zeroes may well arise in the confluent ladder construction giving new pairs of isospectral
potentials [54].

Now we proceed to uncover the origin of irreducible, type II and type III transformations
on the basis of the strip-off factorization. For clarity let us consider an example of irreducible
SUSY of type II with supercharges of second order in derivatives (see the previous section).
Suppose that it realizes insertion of two new energy levels between the ground and first excited
states. Then the three lowest energy levels E0 < E1 < E2 are of importance to study the
relevant SUSY systems: the ground-state level is degenerate between SUSY partners h+ and
h−, i.e. E+

0 = E−
0 , whereas the two excited levels are present only in the spectrum of h−.

One can use the ladder construction (23)–(27) to prepare the same spectral pattern. For this
purpose, intertwining operators (27) of, at least, fourth order in derivatives must be employed.
Indeed, one can prescribe the ladder steps for q±

4 as follows: start from a pair of isospectral
Hamiltonians with the ground-state energies E3; generate the level E0 in the Hamiltonian
h+ using the intertwining operators r±

1 , then sequentially create in the spectrum of h− the
state with energy E2 < E3 by means of r±

2 , next the energy level E1 < E2 using r±
3 and

finally the ground state with the energy E0 < E1 exploiting r±
4 . These elementary steps are

reflected in zero-modes of the intertwining operators q+
4 = r+

1 r+
2 r+

3 r+
4 and q−

4 = r−
4 r−

3 r−
2 r−

1 .
Namely the ground state of h+ is a zero-mode of r−

1 (i.e. of q−
4 ) whereas the eigenstates of h−

corresponding to E0, E1, E2 are annihilated by the product r+
2 r+

3 r+
4 (i.e. by q+

4 ) according to
equation (28). In particular, the ground state of h− is a zero-mode of r+

4 . As the ground-state
energies coincide for h± the Hamiltonian projections on the q±

4 zero-mode space, the matrices
S± are, in general, not diagonalizable but have one rank-2 Jordan cell each. Thus, for instance,

S− =


E0 0 0 C

0 E2 0 0
0 0 E1 0
0 0 0 E0

 �⇒ S̃− =


E0 C 0 0
0 E0 0 0
0 0 E2 0
0 0 0 E1

 , (39)

where a non-zero constant C can be normalized to C = 1. The canonical Jordan form S̃−

in (39) is achieved by means of the re-factorization q+
4 = r+

1 r+
2 r+

3 r+
4 = r+

1 r̃+
2 r̃+

3 r̃+
4 so that the

annihilation of the ground state for h− is now associated with r̃+
2 . Respectively, the polynomial

SUSY algebra shows up one degenerate root,

P4(H) = (H − E0)
2(H − E1)(H − E2). (40)

The strip-off theorem tells us that this fourth-order algebra cannot be optimized to a lower-
order one because there is no replication of roots in different Jordan cells of S̃± matrices.
However one may perform fine-tuning of the Darboux transformation parameters to provide
the constant C = 0 in (39). This peculiar choice moves the SUSY system into the environment
of the strip-off theorem as now two rank-1 cells in (39) contain the same eigenvalue E0. The
SUSY algebra is still given by equation (40) but the intertwining operators reveal a redundancy,

q+
4 = (E0 − h−)q+

2 . (41)

By construction the left-hand side of this relation is fully factorizable in the elementary
binomials r+

j with Hermitian non-singular intermediate Hamiltonians. But on the right-
hand side the operator q+

2 = r̃+
3 r̃+

4 does not admit a further factorization with a non-singular
intermediate Hamiltonian because after removal of the redundant factor (h− − E0) such a
factorization is forbidden by the positivity of the SUSY algebra, equation (30).

One can easily extrapolate the previous argument to the case of the additional degeneracy
of excited levels E1 = E2 to analyse the irreducible SUSY of type III. Thus we reach the
important conclusions that:
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(a) the factorization (27) of intertwining operators q±
N is not unique and there exist options

to have more reducible ladders and less reducible ones with a larger number of singular
intermediate Hamiltonians;

(b) (some of ) the irreducible algebras of type II and type III can be identified with special
cases of fully reducible ladder-type algebras when the Hamiltonian projections S± have
an appropriate number of pairs of Jordan cells with coinciding eigenvalues;

(c) there are many (almost) isospectral systems with different patterns of excited states which
cannot be interrelated with the help of irreducible Darboux transformations of type II
or type III but can be built with the help of a higher-order reducible SUSY ladder.

Yet we may substantially gain effectiveness when the spectral design program allows us
to apply the irreducible transformations of type II or type III in order to embed a couple of
energy levels between two excited ones. Thus a more rigorous investigation of the relationship
between the reducible and irreducible intertwinings is welcome. Especially important is
the proof that any type II or III irreducible SUSY can be embedded (for the same super-
Hamiltonian) into a reducible ladder SUSY.

5. More supercharges ⇐⇒ extended SUSY ⇐⇒ hidden symmetry

The possibility of two supercharges for a quantum SUSY system was mentioned in [116] (see
the preprint version). Namely, the conserved supercharges Q,Q† with complex coefficient
functions in intertwining components q±

N accounted for two SUSY algebras for a Hermitian
super-Hamiltonian H: one for their ‘real’ parts K,K† and another one for their ‘imaginary’
parts P,P † where real and imaginary parts refer to coefficients in the intertwining operators
q±

N = k±
N + ip±

N1
.

Let us examine the general possibility to have several supercharges for the same super-
Hamiltonian. First we recall that a number of supercharges can be produced with the
help of multiplication by a polynomial of the Hamiltonian (see section 4). Certainly such
supersymmetries are absolutely equivalent for the purposes of spectral design and one must get
rid of them. As shown in [85] one can always optimize the infinite set of possible supercharges
so that no more than two non-trivial supercharges remain which are used to generate all others
by ‘dressing’ with polynomials of the Hamiltonians. Thus in one-dimensional QM one may
have the N = 1, 2 SUSY only.

Correspondingly we now consider a general case when the super-Hamiltonian H admits
two supersymmetries with the supercharges K and P generated by differential intertwining
operators of the orders N and N1 respectively,

[H,K] = [H,P ] = [H,K†] = [H,P †] = 0. (42)

The second supercharge P is assumed to be a differential operator of lower order N1 < N .
To close the algebra one has to include all anti-commutators between supercharges, i.e.

the full algebra based on two supercharges K and P with real intertwining operators. Two
supercharges generate two polynomial SUSY given by

{K,K†} = P̃N(H), {P,P †} = P̃N1(H). (43)

The closure of the extended, N = 2 SUSY algebra is given by

{P,K†} ≡ R =
(

p+
N1

k−
N 0

0 k−
Np+

N1

)
, {K,P †} ≡ R† =

(
k+
Np−

N1
0

0 p−
N1

k+
N

)
. (44)

Apparently the components of the operators R,R† are differential operators of the N + N1

order commuting with the Hamiltonians h±; hence R,R† are symmetry operators for the
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super-Hamiltonian. However, in general, they are not polynomials of the Hamiltonians h±

and these symmetries impose certain constraints on the potentials.
All four operators P̃N(H), P̃N1(H),R,R† mutually commute. Moreover the Hermitian

matrix describing this N = 2 SUSY,

Z(H) =
(
P̃N(H) R
R† P̃N1(H)

)
, det[Z(H)] = P̃N P̃N1 − RR† = 0, (45)

is degenerate. Therefore it seems that the two supercharges are not independent and by their
redefinition (unitary rotation) one might reduce the extended SUSY to an ordinary N = 1 one.
However such rotations cannot be global and must use non-polynomial, pseudo-differential
operators as ‘parameters’. Indeed, the operator components of the ‘central charge’ matrix
Z(H) have different order in derivatives. Thus, globally the extended nonlinear SUSY deals
with two sets of supercharges but when they act on a given eigenfunction of the super-
Hamiltonian H one could, in principle, perform energy-dependent rotation and eliminate a
pair of supercharges. Nevertheless this reduction can be possible only after the constraints on
potentials have been resolved.

Let us find the formal relation between the symmetry operators R,R† and the super-
Hamiltonian. These operators can be decomposed into a Hermitian and an anti-Hermitian
parts,

B ≡ 1

2
(R + R)† ≡

(
b+ 0
0 b−

)
, iE ≡ 1

2
(R − R†) ≡ i

(
e+ 0
0 e−

)
. (46)

The operator B is a differential operator of even order and therefore it may be a polynomial of
the super-Hamiltonian H. But if the operator E does not vanish identically it is a differential
operator of odd order and cannot be realized by a polynomial of H.

The first operator plays an essential role in the one-parameter non-uniqueness of the
SUSY algebra. Indeed, one can always redefine the higher-order supercharge as follows,

K(ζ) = K + ζP, {K(ζ),K(ζ)†} = P̃(ζ )

N (H), (47)

keeping the same order N of polynomial SUSY for arbitrary real parameter ζ . From (47) one
gets,

2ζB(H) = P̃(ζ )

N (H) − P̃N(H) − ζ 2P̃N1(H), (48)

thereby the Hermitian operator B is a polynomial of the super-Hamiltonian of order
Nb � N − 1. Let us use it to unravel the super-Hamiltonian content of the operator E ,

E2(H) = P̃N(H)P̃N1(H) − B2(H), (49)

which follows directly from (45) and (46). As the (non-trivial) operator E(H) is a differential
operator of odd order Ne it may have only a realization non-polynomial in H being a square
root of (49) in an operator sense. This operator is certainly non-trivial if the sum of orders
N +N1 of the operators k±

N and p±
N1

is odd and therefore Ne = N +N1. The opposite statement
was also shown in [85], namely if the symmetry operator is non-zero then for any choice of the
operators k±

N and p±
N1

an optimal set of independent supercharges (possibly of lower orders)
can be obtained which is characterized by an odd sum of their orders.

The existence of a non-trivial symmetry operator E commuting with the super-Hamiltonian
results in common eigenstates, which however are not necessarily physical wavefunctions. In
general they may be combinations of two solutions of the Schrödinger equation with a given
energy, the physical and unphysical ones. But if the symmetry operator E is Hermitian with
respect to the scalar product of the Hilbert space spanned by the eigenfunctions of the super-
Hamiltonian H then both operators have a common set of physical wavefunctions. This fact
imposes quite rigid conditions on potentials.
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In particular, for intertwining operators with sufficiently smooth coefficient functions
having constant asymptotics for x −→ ±∞ the symmetry operator E has similar properties
and is evidently Hermitian. In this case one has non-singular potentials with constant
asymptotics and therefore a continuum energy spectrum of H with wavefunctions satisfying
the scattering conditions. Thus the incoming and outgoing states, ψin(x) and ψout(x), at large
x are conventionally represented by combinations of plane waves which are solutions of the
Schrödinger equation for a free particle,

ψ(x)|x→−∞ −→ exp(ikinx) + R(kin) exp(−ikinx),

ψ(x)|x→+∞ −→ (1 + T (kout)) exp(ikoutx),
(50)

where the reflection, R(kin), and transmission, T (kout), coefficients are introduced. Since the
symmetry is described by a differential operator of odd order which tends to an antisymmetric
operator with constant coefficients the eigenstates of this operator approach asymptotically
individual plane waves ∼exp(±ikx) with opposite eigenvalues ∼ ±kf (k2) and cannot be
superimposed. Hence the eigenstate of the super-Hamiltonian with a given value of the
operator E may characterize only the transmission and cannot have any reflection, R(kin) = 0.
We conclude that the corresponding partner potentials V1,2 inevitably belong to the class of
transparent or reflectionless ones [117]. Such a symmetry may be related to the Lax method
in the soliton theory [16].

As the symmetry operator E is Hermitian its eigenvalues are real but, by construction, its
coefficients are purely imaginary. Since the wavefunctions of bound states of the system H
can always be chosen real we conclude that they must be zero-modes of the operator E(H),

E(H)ψi = E(Ei)ψi = 0, P̃N(Ei)P̃N1(Ei) − B2(Ei) = 0, (51)

which represents the algebraic equation on bound state energies of a system possessing two
supersymmetries. Among solutions of (51) one also reveals a zero-energy state at the bottom
of the continuum spectrum. On the other hand one could also find the solutions which are
not associated with any bound state. The very appearance of such unphysical solutions is
accounted for by the trivial possibility of replicating supercharges by their multiplication by
the polynomials of the super-Hamiltonian as discussed in section 4.

6. A simple but useful example of extended SUSY

Let us examine the algebraic structure of the simplest nonlinear SUSY with two supercharges,

k± ≡ ∂2 ∓ 2f (x)∂ + b̃(x) ∓ f ′(x); p± ≡ ∓∂ + χ(x), (52)

induced by the complex supercharge of second order in derivatives [85, 116]. The
supersymmetries (42) generated by K,K† and P,P † prescribe that

V1,2 = χ2 ∓ χ ′ = ∓2f ′ + f 2 +
f ′′

2f
−

(
f ′

2f

)2

− d

4f 2
− a,

b̃ = f 2 − f ′′

2f
+

(
f ′

2f

)2

+
d

4f 2
,

(53)

where χ, f are real functions and a, d are real constants. The related superalgebra closure for
K,K† and P,P † takes the form,

{K,K†} = (H + a)2 + d, {P,P †} = H. (54)

The compatibility of two supersymmetries is achieved by the constraint χ = 2f and by the
nonlinear second-order differential equation

f 2 +
f ′′

2f
−

(
f ′

2f

)2

− d

4f 2
− a = χ2 = 4f 2, (55)
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with solutions parametrized by two integration constants. Therefore the existence of two
SUSY reduces substantially the class of potentials for which they may appear. Evidently
equation (55) can be integrated to,

(f ′)2 = 4f 4 + 4af 2 + 4G0f − d ≡ 
4(f ), (56)

where G0 is a real constant.
The solutions of this equation are elliptic functions which can be easily found in the

implicit form, ∫ f (x)

f0

df√

4(f )

= ±(x − x0), (57)

where f0 and x0 are real constants.
It can be shown that they are non-singular if:

(a) 
4(f ) has three different real roots and the double root β/2 is either the maximal one or
a minimal one,


4(f ) = 4

(
f − β

2

)2
((

f +
β

2

)2

− (β2 − ε)

)
, 0 < ε < β2. (58)

Then there exists a relation between the constants a, d,G0 in terms of coefficients β, ε,

a = ε − 3β2

2
< 0, G0 = β(β2 − ε), d = β2

(
3β2

4
− ε

)
. (59)

The constant f0 is taken between the double root and a nearest simple root.
(b) 
4(f ) has two different real double roots which correspond in (58), (59) to G0 = 0,

β2 = ε > 0, a = −ε/2, d = −ε2/4. The constant f0 ranges between the roots.

The corresponding potentials V1,2 are well known [117] to be reflectionless, with one
bound state at the energy (β2 − ε) and with the continuum spectrum starting from β2.
Respectively the scattering wavefunction is proportional to exp(ikx) with k =

√
E − β2.

In the case (a) the potentials coincide in their form and differ only by a shift in the
coordinate (‘Darboux displacement’ [83]),

V1,2 = β2 − 2ε

ch2
(√

ε
(
x − x

(1,2)
0

)) , x(1,2) = x0 ± 1

4
√

ε
ln

β − √
ε

β +
√

ε
, (60)

and in the case (b) one of the potentials can be chosen constant (being a limit of infinite
displacement),

V1 = β2, V2 = β2

(
1 − 2

ch2(β(x − x0))

)
, (61)

for these potentials one can elaborate extended SUSY algebra.
The initial algebra is given by relations (54). It must be completed by the mixed anti-

commutators

{K,P †} = {K†, P }† = B(H) − iE(H), (62)

(see the previous section). In our case the first, polynomial symmetry operator turns out to be
constant, B(H) = G0 when taking into account (52) and (56). Meanwhile the second operator
reads,

E(H) = i
[
I∂3 − (

aI + 3
2 V(x)

)
∂ − 3

4 V′(x)
]
, (63)
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in the notation H ≡ −∂2I+V(x). By construction the operator E(H) realizes a new symmetry
for the super-Hamiltonian. Directly from equation (63) one derives that,

E2(H) = H [(H + a)2 + d] − G2
0 = (H − Eb)

2(H − β2), (64)

where Eb = β2 − ε is the energy of a bound state. Thus (some of) the zero modes of
E(H) characterize either bound states or zero-energy states in the continuum. However there
also exist the non-normalizable, unphysical zero-modes corresponding to E = Eb, β

2. We
remark that in the case (b) only the Hamiltonian h− has a bound state. Hence the physical
zero modes of E(H) may be either degenerate (case (a), broken SUSY) or non-degenerate
(case (b), unbroken SUSY).

The square root of (64) can be established unambiguously from the analysis of the
transmission coefficients,

E(H) = (H − Eb)
√

H − β2. (65)

We note that the symmetry operator (63), (65) is irreducible, i.e. the binomial (H − Eb)

cannot be ‘stripped off’. Indeed the elimination of this binomial would convert the third-order
differential operator (63) into an essentially nonlocal operator. The sign of the square root in
(65) is fixed from the conventional asymptotics of scattering wavefunctions ∼exp(ikx) and
the asymptotics V1,2 −→ β2 by comparison of this relation with equation (63).

When taking equation (65) into account one finds the mixed anti-commutators of the
extended SUSY algebra (62) in a non-polynomial form,

{K,P †} = {K†, P }† = G0 − i(H − Eb)
√

H − β2. (66)

Thus the ‘central charge’ of this extended SUSY is built of elements (54) and (66) and evidently
cannot be diagonalized by a unitary rotation with elements polynomial in H. Therefore the
algebra must be considered to be extended in the class of differential operators of finite order.

Let us now clarify the non-uniqueness of the higher-order supercharge and its role in the
classification of the polynomial SUSY. For arbitrary ζ in (47) one obtains

{K(ζ), (K(ζ))†} = H 2 + (2a + ζ 2)H + a2 + d + 2ζG0 = (H + aζ )
2 + dζ ,

(67)

aζ = a +
1

2
ζ 2, dζ = d + 2ζG0 − aζ 2 − 1

4
ζ 4 ≡ −
4

(
−ζ

2

)
,

where 
4(f ) is defined in equation (56).
For the extended SUSY one can discover that the previous classification (section 3) of

irreducible ladders (Darboux transformations) may fail. Indeed, the sign of dζ , in general,
depends on the choice of ζ . For instance, let us consider the case (a) when

dζ = − 1
4 (ζ + β)2[(ζ − β)2 − 4(β2 − ε)]. (68)

Evidently if ζ lies between the real roots of the last factor in (68) then dζ is positive and
otherwise it is negative. But two real roots always exist because β2 > ε. Thereby the sign of dζ

can be made negative as well as positive without any change in the super-Hamiltonian. Hence
in the case when the polynomial SUSY is an extended one, with two sets of supercharges,
the irreducibility of type I of a polynomial SUSY algebra does not signify any invariant
characteristic of potentials.

7. Non-stationary Schrödinger equations: intertwining and hidden symmetry

Discussions of symmetry properties of the time dependent Schrödinger equation have a long
history, see for instance [124] and references therein as well as [125]. In these discussions
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the potentials concerned are mainly time independent, see e.g. [118, 120]. Here our aim is
to elucidate that many of the nonlinear SUSY constructions illustrated before can also be
implemented in the Schrödinger time-dependent framework [97, 119, 121].

Certainly, general first- and higher-order intertwining relations between non-stationary
one-dimensional Schrödinger operators can be easily introduced. But already in the first-
order case the intertwining relations imply some hidden symmetry which in turn leads to a
specific quantum dynamics when the evolution is described by quantum orbits and results in
the R-separation of variables [122]. Second-order intertwining operators [122, 123] and the
corresponding nonlinear SUSY give rise to the quantum motion governed by the spectrum
generating algebras.

Let us start with intertwining relations of the non-stationary Schrödinger operator

S[V ] = i∂t + ∂2
x − V (x, t). (69)

Here ∂t = ∂/∂t and ∂x = ∂/∂x denote the partial derivatives with respect to time and
position: we will denote these derivatives, if applied to some function f , by a dot and a prime,
respectively. Hence, we use the notation ḟ (x, t) = (∂tf )(x, t) and f ′(x, t) = (∂xf )(x, t).

The most general intertwining operator of first order [122] is given by

q+
t = ξ0(x, t)∂t + ξ1(x, t)∂x + ξ2(x, t) (70)

with, in general, complex-valued functions ξ0, ξ1 and ξ2. The possibility of a complexification
of the intertwining (Darboux) (first and also higher order) operator was highlighted by [123].
Note also that in contrast to [119] the formalism of [122] allows a priori for a first-order
operator in ∂t .

For the above defined Schrödinger operator (69) the intertwining relation reads

S[V1]q+
t = q+

t S[V2], (71)

where the functions ξi (i = 0, 1, 2) and V1,2 are not independent. It can also be represented
in the SUSY form, equation (5), when the stationary Hamiltonians h± are extended to the
Schrödinger operators S[V1,2], then

[Ŝt ,Qt ] = 0, Ŝt =
(
S[V1] 0

0 S[V2]

)
, Qt =

(
0 q+

t

0 0

)
. (72)

Inserting the explicit forms of the Schrödinger operators (69) and the intertwining operator (70)
into relation (71) it was found [122] that ξ0 and ξ1 may depend only on time, i.e. ξ ′

0 = 0 = ξ ′
1.

The assumption that ξ0 does not vanish identically then leads to the consequence that the
potential difference V1 −V2 also depends only on time. This is a rather uninteresting case and,
therefore, we set ξ0 ≡ 0 without loss of generality. Making now the following choice of the
appropriate variables ξ1(t) = eiβ(t)ρ(t) and ξ2(x, t) = eiβ(t)ρ(t)ω′(x, t) with real β, positive
ρ and complex ω functions one finds

V1(x, t) = ω′2(x, t) + ω′′(x, t) − iω̇(x, t) + α(t) − β̇(t) + iρ̇(t)/ρ(t),

V2(x, t) = ω′2(x, t) − ω′′(x, t) − iω̇(x, t) + α(t),
(73)

where α is some time-dependent complex-valued integration constant. Again one may set
[122] β ≡ 0 without loss of generality. Furthermore, one may also take α ≡ 0 because it can
always be absorbed in ω by the shift ω → ω − i

∫
dt α. Hence, we are left with

V1(x, t) = ω′2(x, t) + ω′′(x, t) − iω̇(x, t) + iρ̇(t)/ρ(t),

V2(x, t) = ω′2(x, t) − ω′′(x, t) − iω̇(x, t).
(74)

Here the so-called super-potential ω is still not arbitrary as the potentials are to be real. This
can, for example, be achieved by assuming a stationary real super-potential. However it leads



10314 A A Andrianov and F Cannata

to the standard stationary SUSY QM discussed previously. Alternatively, we will consider a
complex super-potential

ω(x, t) = ωR(x, t) + iωI (x, t) (75)

with real functions ωR and ωI . The reality condition ImV1 = ImV2 = 0 implies

2(ωI )
′′ + ρ̇/ρ = 0, 2(ωR)′(ωI )

′ − (ωI )
′′ − ω̇R = 0, (76)

which can easily be integrated to

ωI (x, t) = −1

4

ρ̇(t)

ρ(t)
x2 +

1

2
ρ(t)µ̇(t)x + γ (t),

ωR(x, t) = 1

2
ln ρ(t) + K(x/ρ(t) + µ(t)),

(77)

where µ and γ are arbitrary real functions of time and K is an arbitrary real function of the
variable y = x/ρ + µ. In terms of these functions the final form of the two partner potentials
is

V1,2(x, t) = 1

ρ2(t)
[K ′2(y) ± K ′′(y)]

− ρ̈(t)

4ρ(t)
x2 +

(
ρ̇(t)µ̇(t) +

ρ(t)µ̈(t)

2

)
x − ρ2(t)µ̇2(t)

4
+ γ̇ (t) (78)

and the intertwining operator reads

q+
t (x, t) = ρ(t)∂x + K ′(x/ρ(t) + µ(t)) − i

2
(ρ̇(t)x − ρ2(t)µ̇(t)). (79)

Let us demonstrate [122] that the non-stationary Schrödinger equation S[V1,2]ψ1,2 = 0 with
potentials given in equation (78) (which is equivalent to the intertwining (71)) admits a
separation of variables. In fact, after the transformation

y = x/ρ(t) + µ(t), ψ1,2(x, t) = 1√
ρ(t)

e−iωI (x,t)φ1,2(y, t) ≡ �(x, t)φ1,2(y, t) (80)

this Schrödinger equation becomes quasi-stationary [126]

iρ2(t)∂tφ1,2(y, t) = [−∂2
y + K ′2(y) ± K ′′(y)

]
φ1,2(y, t), (81)

which is obviously separable in y and t. Hence, the solutions of the original Schrödinger
equations have the general form ψ(x, t) = �(y, t)Y (y)T (t) which is known as the
R-separation of variables [127]. In other words, for any pair of Schrödinger operators S[V1,2],
which admits a first-order intertwining relation (71) there exists a transformation (80) to some
new coordinate in which the potentials become stationary (see also [121]). Note that the
transformation associated with the special case ρ(t) = 1 and µ(t) = vt with constant velocity
v corresponds to the Galileo transformation. See, for example, [128].

This R-separation of variables is certainly related to the existence of a symmetry operator.
First, one can directly verify the adjoint intertwining relation for real potentials,

q−
t S[V1] = S[V2]q−

t (82)

where

q−
t ≡ (

q+
t

)† = −ρ(t)∂x + K ′(x/ρ(t) + µ(t)) +
i

2
(ρ̇(t)x − ρ2(t)µ̇(t)). (83)

Then from (71), (72) and (82) we obtain the closure of the SUSY algebra,{
Qt,Q

†
t

} = Rt , [Ŝt ,Rt ] = 0, Q
†
t = (Qt)

†, (84)
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where the symmetry operator Rt has the following components:

R±
t = q±

t q∓
t = −ρ2(t)∂2

x +
i

2
(ρρ̇(t){x, ∂x} − 2ρ3(t)µ̇(t)∂x)

+ [K ′(x/ρ(t) + µ(t))]2 ± K ′′(x/ρ(t) + µ(t)) +
1

4
(ρ̇(t)x − ρ2(t)µ̇(t))2

= exp{−iωI (x, t)}[−∂2
y + K ′2(y) ± K ′′(y)

]
exp{iωI (x, t)}. (85)

Thus the quasi-stationary Hamiltonians in equation (81) are just unitary equivalent to the
symmetry operators R±

t . It means that the supersymmetry entails the separation of variables
because it provides a new symmetry. As a consequence the quantum dynamics splits in orbits
with a given eigenvalue of the symmetry operator.

8. Second-order intertwining for stationary potentials: symmetry operators
and spectrum generating algebra

Now we will report on the intertwining of a pair of Schrödinger operators S[V1] and S[V2] by
second-order (intertwining) operators of the form

q+
t (x, t) = G(x, t)∂2

x − 2F(x, t)∂x + B(x, t). (86)

We will explore the connection of the time-dependent SUSY charges with the appearance of
the spectrum generating (oscillator like) algebras for the corresponding Hamiltonians.

As in the first-order case it can be shown [122] that the inclusion of an additional term
being of first order in ∂t leads to the trivial situations where the difference V1 − V2 depends
on the time t only. Furthermore, from the intertwining relation (71) with above q+

t one
can conclude that the function G may not depend on x and similarly to the discussion in
the previous section it is even possible to exclude a phase. In other words, without loss of
generality G(x, t) ≡ g(t) and consider from now on an intertwining operator of the form

q+
t (x, t) = g(t)∂2

x − 2F(x, t)∂x + B(x, t). (87)

In [122] particular solutions of the intertwining relation (71) were constructed with q+
t as

given above. In this section we shall analyse the solutions of the intertwining relation (71) for
the case where both potentials V1 and V2 are stationary, i.e. do not depend on t.

One class of such solutions is known from [54]. Assuming a supercharge q+
t with

real coefficient functions independent of t, one finds that the corresponding solutions of
(71) coincide with those of the stationary intertwining relations

(−∂2
x + V1(x)

)
q+(x) =

q+(x)
(−∂2

x + V2(x)
)

from [54].
Here we are interested in more general solutions of (71) when operators q+

t depend on t,

(i∂t − h+)q+
t (x, t) = q+

t (x, t)(i∂t − h−), (88)

with standard stationary Hamiltonians h± = −∂2
x + V1,2(x) but explicitly time-dependent

intertwining operators.
Let us employ the suitable ansatz with simple t-dependence in (87),

q+
t (x, t) = M+(x) + A(t)a+(x), (89)

where

M+(x) ≡ ∂2
x − 2f (x)∂x + b(x), a+(x) ≡ ∂x + W(x). (90)

Here all functions besides A are considered to be real. We also assume A �≡ 0. With this
ansatz the intertwining relation (88) can be shown [122] to yield

iȦ = 2m̃ + 2mA, h+M+ − M+h− = 2m̃a+, h+a+ − a+h− = 2ma+, (91)

with real constants m̃ and m.
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We find it interesting to focus on the case m �= 0 to explore certain spectrum generating
algebras. The first equation in (91) immediately leads to

A(t) = m0 e−2imt − m̃/m (92)

with a real m0, and

q+
t (x, t) = ∂2

x −
(

2f (x) +
m̃

m

)
∂x + b(x) − m̃

m
W(x) + m0 e−2imta+(x). (93)

It is obvious that without loss of generality we may set m̃ = 0 as a non-vanishing m̃ may
always be absorbed via a proper redefinition of f and b, i.e. of the operator M.

As a consequence, the second relation in (91) leads to a second-order intertwining between
h+ and h−. This has already been considered in [54] and it was found that the potentials V1, V2

and the function b can be expressed in terms of f and two arbitrary real constants a and d:

V1,2(x) = ∓2f ′(x) + f 2(x) +
f ′′(x)

2f (x)
− f ′2(x)

4f 2(x)
− d

4f 2(x)
− a,

b(x) = −f ′(x) + f 2(x) − f ′′(x)

2f (x)
+

f ′2(x)

4f 2(x)
+

d

4f 2(x)
.

(94)

The corresponding second-order SUSY algebra generated by the supercharge M is similar
to (54),

{M,M†} = (H + a)2 + d ≡ P2(H). (95)

Note that cases with d < 0 are reducible ones.
One may find some similarities between the present intertwining algebra (91) and the

extended SUSY relations discussed in section 5. But we emphasize that now for m �= 0
the last relation in (91) does not generate a second SUSY. Rather it creates the equivalence
of relatively shifted spectra of two Hamiltonians h+ and h− which is typical for spectrum
generating algebras. Specifically

a+a− = h+ − m + c; a−a+ = h− + m + c, (96)

where c is a real constant. Therefore the reflectionless potentials found in section 5 are
produced only in the limit of m = 0. For this reason we use here the notation for relevant
operators different from those in section 5.

The genuine spectrum generating algebra for stationary Hamiltonians h± can be derived
from equation (91)

[h+,G+] = −2mG+, G+ ≡ M+a−,[
h+,G

†
+

] = 2mG
†
+, G

†
+ ≡ a+M−,

[h−,G
†
−] = 2mG

†
−, G

†
− ≡ M−a+,

[h−,G−] = −2mG−, G− ≡ a−M+,

(97)

where a− = (a+)† and M− = (M+)†. The closure of this spectrum generating algebra is a
polynomial deformation of the Heisenberg algebra [129],[

G
†
±,G±

] = F±(h±). (98)

The explicit form of the polynomials F±(x) can be obtained with the help of equations (91)
and (96) for m̃ = 0. For instance,

G†
+G+ = (h+ − m + c)P2(h

+ − 2m); G+G
†
+ = (h+ + m + c)P2(h

+), (99)
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where the notation from equations (95) and (96) is employed. The polynomials F±(x) turn
out to be different for the isospectral partners h±,

F +(h+) = −6m(h+)2 + 4m(2m − 2a − c)h+ − 2m[a2 + d + 2(a − m)(c − m)];
(100)

F−(h−) = −6m(h−)2 − 4m(2m + 2a + c)h− − 2m[a2 + d + 2(a + m)(c + m)].

Hence the two spectrum generating algebras are, in general, different, which is essentially due
to the shift in intertwining relations (96). There is a formal discrete symmetry between their
constants and Hamiltonians h+, a, c �⇒ −h−,−a,−c.

The intertwining relation (88) and its adjoint give rise to the symmetry operators q+
t q−

t

and q−
t q+

t for (i∂t −h+) and (i∂t −h−), respectively. Using equations (92), (95), (96) and after
elimination of polynomials of the Hamiltonians h± these symmetry operators may be reduced
to the form

R+(x, t) = m0
[
e2imtG+ + e−2imtG†

+

]
, R−(x, t) = m0

[
e2imtG− + e−2imtG

†
−
]
. (101)

As our potentials do not depend on time the operators R±(x, t + �) with a time shift � are
also symmetry operators for the same Schrödinger equation,[

R±
(t+�), St

] = 0. (102)

In particular, time derivatives Ṙ±(x, t) of Hermitian symmetry operators R±(x, t) form an
independent set of Hermitian symmetry operators which do not commute between themselves.
Similar results have also been obtained in [118] using a different approach. We see that the
non-stationary SUSY delivers symmetry operators which encode the entire set of spectrum
generating algebras

e2imtG± = 1

2m0
R±(x, t) − i

4mm0
Ṙ±(x, t). (103)

The natural question concerns the reducibility of the second-order intertwining operator
(87) to a pair of consecutive first-order operators. Progress in classification of possible
irreducible transformations has been made in [122], though more work must be done towards
the full classification.

9. Conclusions and perspectives

The purpose of this short review has been two-fold: to elucidate the recent progress in
nonlinear SUSY realization for a broad community of spectral designers and to draw the
reader’s attention to a variety of SUSY extensions which yield new QES potential systems and
illuminate some old ones. With the experience from the previous sections the general SUSY
QM can be thought of as governed by the extended nonlinear SUSY algebra with N pairs
of nilpotent supercharges Qj,Q

†
j and a number of Hermitian hidden-symmetry differential

operators Rα = R†
α, [Rα,Rβ] = 0; 0 � α, β � M . Such a SUSY algebra takes the modified

form,

[Rα,Qk] = [
Rα,Q

†
k

] = 0; {Qj,Qk} = {
Q

†
j ,Q

†
k

} = 0; {
Qj,Q

†
k

} = P(Rα);
(104)

We note that, first, the super-Hamiltonian itself is included into the set of symmetry operators,
say for α = 0, R0 ≡ H and, second, not all the symmetry operators are necessarily present in
the algebraic closure (104) (see sections 7, 8).
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On the other hand, there remains plenty of open questions and challenges to be solved.

• In the first half of this paper we have given a systematic analysis of reducibility versus
irreducibility of types I, II, III in the one-dimensional QM. However the higher-order
irreducibility needs more effort to prove the exhaustive completeness of the classification
in section 3.

• For SUSY extensions it may be of interest to find pairs of (quasi)isospectral potentials
admitting hidden symmetries which are related by a type II irreducible Darboux
transformation.

• The irreducibility classification for non-stationary potentials as well as the existence of
extended SUSY is very welcome to be investigated and new applications to be found, in
particular, to explore spectrum generating algebras (see section 8).

• The similarity of the Schrödinger equation to the Fokker–Planck one allows
[96, 122, 130] to find the SUSY scheme for generating new solutions of the latter
equation. One can be tempted to develop a more exhaustive analysis of how to produce
SUSY clones using the ideas of the conventional nonlinear SUSY outlined here. But
attention should be focused on the non-Hermiticity of the Fokker–Planck operator and
on the fact that the equivalent of the wavefunction is a positive and properly normalized
probability function.

• Matrix (coupled channel) systems represent a rich and not fully scanned field of extended
SUSY systems with hidden symmetries. While certain interesting matrix potentials have
been explored [45, 131–134] it is clear that in this case the way to a comprehensive
understanding of irreducible building blocks for spectral design is still long.

• The polynomial SUSY in two dimensions has already brought a number of examples of
new types of irreducible SUSY with hidden symmetries of higher order in derivatives
[55, 57, 135]. One may expect a variety of new types of irreducible SUSY for third-order
(and higher-order) supercharges as well as new discoveries in three dimensions.

• Complex potentials ([136–142]) seem to offer less problematic generalizations of QM with
Hermitian Hamiltonians as compared to matrix and multi-dimensional QM. Therefore
many of the tools and results of one-dimensional SUSY QM are expected to be applicable
when a potential is complex [85]. However, as was recently remarked in [141], there exist
non-Hermitian Hamiltonians which are not diagonalizable but at best can be reduced to a
Jordan form. For the latter special care must be taken to derive the isospectrality and to
build SUSY ladders.
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